St.Germain - Collins

Dioxin Soil Cleanup Case Study: A Mix of Conventional Field and New Laboratory Techniques

CAN RELY ON WHEN IT COUNTS

Keith Taylor, C.G., P.G. Patrick Coughlin St.Germain Collins AEHS/UMASS Conference October 19, 2011

Introduction

Topics to Be Covered Today

- Utility Pole Contamination
- Soil Sampling Methods
- Dioxin Testing
- How to Fix a "Broken" Field Investigation

EXPERIENCE YOU CAN RELY ON

WHEN IT COUNTS

Cost Considerations

Utility Pole Contamination

Utility poles treated to prevent decay

- Creosote
- Chromated Copper Arsenate (CCA)
- Pentachlorophenol (usually a diesel fuel solution) "Penta"
- Contaminants of concern PAHs, CCA metals, Penta

RIENCE YOU CAN RELY ON WHEN IT COUNTS

• (And Dioxin)

Pentachlorophenol

- Penta still used as utility pole preservative today.
- 36 million poles with Penta preservative in use in the US.

Dioxins

- Dioxin is an unavoidable byproduct of Penta manufacturing.
- EPA says 2,3,7,8-TCDD (most toxic dioxin) must be less than 1 ppb in Penta.
- Dioxin typically regulated using the Toxicity Equivalence Factor (TEF) approach.
- Summing the TEF-adjusted concentrations of detected dioxins gives Toxicity Equivalent (TEQ) value.

Dioxins

- Dioxin cleanup standards vary widely.
- Most based on future land use scenarios.
- Standards below are not completely comparable (land uses vary).

DIOXIN TEQ CLEANUP STANDARDS (NG/KG)

	ME	NH	VT	MA
"Residential"	10	1,000	4.5	20
"Industrial"	31	5,000	18	300

ng/kg (ppt) levels make crosscontamination a serious field concern

Site Description

- Utility pole storage site in northern New England since 1984.
- Two areas of storage:
 - Pole Yard
 - Stub Yard (broken poles)
- Both on bare soil.
- Thin fill soil on top of irregular bedrock surface.

WHEN IT

Site Layout

Previous Work (by others)

- Sampling initially focused on Penta, PAHs, CCA—Penta became primary COC.
- 200 tons of Penta-contaminated soil removed (stored on-site) with clean confirmatory samples.
- So far, so good—Penta distribution made sense, easy to remove. But...
- Dioxin testing at request of State (oh-oh!).

Previous Work (by others)

- 34 borings and 66 samples for dioxin later...
- (Lab costs alone in the \$35,000-\$60,000 range using EPA Method 8290)
- Widespread exceedences of Residential standard (4.5 ng/kg).
- Extent of dioxin contamination still unclear because of:
 - No control for sample locations, often irregular.
 - Sample depth intervals inconsistent.
 - Cross contamination in the field.

Schematic Cross Section

Previous Work (by others)

Previous Work (by others)

Do the math--

Overbudget Project Delays + Dioxin Extent Unclear Unhappy Client \Rightarrow New Consultant

EXPERIENCE YOU CAN RELY ON WHEN IT COUNTS

Our Sampling

- Past iterative approach for characterization too costly, time-consuming.
- 20' grid tied into structures. Limited borings filled in gaps for characterization.
- Specific depth intervals, separate boreholes to minimize cross-contamination.

WHEN IT

- 35 samples analyzed using EPA 4025M, 5 dups using EPA 8290.
- More on cost savings later.

Data Analysis

ERIENCE YOU CAN RELY ON WHEN IT COUNTS

- Contoured surface dioxin levels using Surfer for a visual understanding of its distribution.
- Used grids to select excavation boundaries, depths, and estimate volumes.
- Did not worry about exact location of cleanup threshold boundary since confirmatory sampling would be completed.

Results

Results

Remediation Depths

Remediation

Planned soil removal boundaries and depths 18 ng/kg standard

Remediation

- Industrial Standard (18 ng/kg) selected because 4.5 ng/kg would have significantly increased soil volume.
- Estimated 2,286 tons, 2,108 tons actual.
- Confirmatory sampling consisted of 3 to 5-grab composites for each 20' x 20' grid—62 samples in total.
- Both sidewalls and bottom sampled.
- Confirmatory sampling showed two areas that required additional excavation

Confirmatory Samples

Confirmatory Samples

Cost Considerations

Lab Method:	8290	8290	4025M
Approach:	Sample More	Dig More	Actual
Add. Site Char.	\$27,000	\$17,000	\$13,000
Remediation & Confirmatory Sampling	\$98,000	\$85,000	\$65,000
Soil Disposal	\$150,000	\$174,000	\$150,000
TOTALS =	\$275,000	\$276,000	\$228,000
	18%		

Conclusions/Lessons

- Get your COCs right the first time.
- If Dioxin is a COC, be careful!
- Establish grid for characterization and confirmatory sampling.

PERIENCE YOU CAN RELY ON

WHEN IT COUNTS

- Consistency in sample depths.
- Explore new analytical methods.